Questões – tensão e deformação - IV

1. Determine o módulo de resiliência para cada uma das seguintes ligas:

<table>
<thead>
<tr>
<th>Material</th>
<th>Limite de escoamento (MPa)</th>
<th>Y (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liga de aço</td>
<td>550</td>
<td>207</td>
</tr>
<tr>
<td>Liga de latão</td>
<td>350</td>
<td>97</td>
</tr>
<tr>
<td>Liga de alumínio</td>
<td>250</td>
<td>69</td>
</tr>
<tr>
<td>Liga de titânio</td>
<td>800</td>
<td>107</td>
</tr>
</tbody>
</table>

2. Uma liga de latão (Y = 97 GPa) que se pretende utilizar para mola em uma aplicação deve possuir um módulo de resiliência de pelo menos 0,75 MPa. Qual deve ser seu limite de escoamento mínimo?

3. Dois fios, um de cobre (Y = 120 GPa) de 8 m e um de aço (Y = 207 GPa) de 4 m de comprimento, cujas seções transversais têm 0,5 cm² são ligados pelas extremidades e esticados com uma tensão de 500 N.
 a) Qual é a variação no comprimento de cada fio?
 b) Qual é a energia potencial elástica do sistema?

4. A fig. ao lado mostra a curva tensão-deformação para o quartzo. Quais são (a) o módulo de Young do material e (b) o valor aproximado da energia potencial elástica armazenada no material no momento de seu limite elástico, considerando um comprimento inicial de 0,5 m e um diâmetro de 20 mm?

5. Considere um corpo de prova cilíndrico feito a partir de uma liga de aço (ver gráfico ao lado) com 10 mm de diâmetro e 75 mm de comprimento, puxado em tração. Determine:
 a) O alongamento do corpo de prova quando uma carga de 23.500 N é aplicada.
 b) O módulo de resiliência do material.

6. Um corpo de prova cilíndrico, feito em alumínio, tem diâmetro de 12,8 mm e comprimento útil de 50,800 mm e está sendo puxado em tração. Utilize as características carga-alongamento tabuladas ao lado para completar os itens abaixo.

 (a) Plote os dados na forma de tensão de engenharia em função da deformação de engenharia.
 (b) Compute o módulo de elasticidade.
 (c) Determine o limite de escoamento para uma pré-deformação de 0,002.
 (d) Determine o limite de resistência à tração desta liga.
 (e) Calcule o módulo de resiliência.
 (f) Calcule o valor da tenacidade dessa liga.

<table>
<thead>
<tr>
<th>Carga (N)</th>
<th>Comprimento (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50,800</td>
</tr>
<tr>
<td>7.330</td>
<td>50,851</td>
</tr>
<tr>
<td>15.100</td>
<td>50,902</td>
</tr>
<tr>
<td>23.100</td>
<td>50,952</td>
</tr>
<tr>
<td>30.400</td>
<td>51,003</td>
</tr>
<tr>
<td>34.400</td>
<td>51,054</td>
</tr>
<tr>
<td>38.400</td>
<td>51,308</td>
</tr>
<tr>
<td>41.300</td>
<td>51,816</td>
</tr>
<tr>
<td>44.800</td>
<td>52,832</td>
</tr>
<tr>
<td>46.200</td>
<td>53,848</td>
</tr>
<tr>
<td>47.300</td>
<td>54,864</td>
</tr>
<tr>
<td>47.500</td>
<td>55,880</td>
</tr>
<tr>
<td>46.100</td>
<td>56,896</td>
</tr>
<tr>
<td>44.800</td>
<td>57,658</td>
</tr>
<tr>
<td>42.600</td>
<td>58,420</td>
</tr>
<tr>
<td>36.400</td>
<td>59,182</td>
</tr>
<tr>
<td>Fratura</td>
<td></td>
</tr>
</tbody>
</table>
Gabarito

1. 0,73MPa; 0,63MPa; 0,45MPa; 2,99MPa
2. 0,38 MPa
3. a) $\Delta l_{cobre} = 1,7 \, \text{mm}$ e $\Delta l_{aço} = 0,49 \, \text{mm}$; b) $E_{\text{Pássaro}} = 0,174 \, \text{J}$
4. a) 75 GPa; b) 94,2 J
5. a) 0,0975 mm; b) 0,53 MPa
6. b) 59,65 GPa; c) 275 MPa; d) 375 MPa; e) 275 kPa; f) 55,93 MPa

Resolução:

1.
 \[
 u_R = \frac{1}{2} \sigma_v E = \frac{1}{2} \sigma_v \frac{\sigma_v}{Y} = \frac{1}{2} \frac{\sigma_v^2}{Y} \\
 \]
 - \[u_{\text{aço}} = \frac{1}{2} \left(\frac{550.10^6}{207.10^9} \right)^2 = 0,73 \, \text{MPa} \]
 - \[u_{\text{latão}} = \frac{1}{2} \left(\frac{350.10^6}{97.10^9} \right)^2 = 0,63 \, \text{MPa} \]
 - \[u_{\text{alumínio}} = \frac{1}{2} \left(\frac{250.10^6}{69.10^9} \right)^2 = 0,45 \, \text{MPa} \]
 - \[u_{\text{titânio}} = \frac{1}{2} \left(\frac{800.10^6}{107.10^9} \right)^2 = 2,99 \, \text{MPa} \]

2.
 \[u_R = \frac{1}{2} \frac{\sigma_v^2}{Y} \Rightarrow \sigma_v^2 = 2 u_R Y = 2 \times 0,75.10^6 \times 97.10^9 = 14,55.10^{14} \Rightarrow \sigma_v = \sqrt{14,55.10^{14}} = 0,38 \, \text{MPa} \]
3.

a)

\[\sigma = Y \varepsilon \Rightarrow F = \frac{Y \Delta \ell}{A} \Rightarrow \Delta \ell = \frac{F \cdot \varepsilon}{YA} \Rightarrow \]

- \[\Delta \ell_{\text{cobre}} = \frac{500.8}{120.10^3.14.(0,25.10^{-2})^2} = 1,7 \cdot 10^{-3} m = 1,7 mm \]

- \[\Delta \ell_{\text{aço}} = \frac{500.4}{207.10^3.14.(0,25.10^{-2})^2} = 0,49 \cdot 10^{-3} m = 0,49 mm \]

b)

\[U = \frac{1}{2} \frac{YA}{\ell_0} \Delta \ell^2 \Rightarrow \]

- \[U_{\text{cobre}} = \frac{1}{2} \frac{1120.10^3.(0,25.10^{-2})^2}{8} \cdot (1,7 \cdot 10^{-3})^2 = 0,135 J \]

- \[U_{\text{aço}} = \frac{1}{2} \frac{207.10^3.(0,25.10^{-2})^2}{4} \cdot (0,49 \cdot 10^{-3})^2 = 0,039 J \]

- \[U_{\text{sistema}} = U_{\text{cobre}} + U_{\text{aço}} = 0,174 J \]

4.

a)

\[\sigma = Y \varepsilon \Rightarrow Y = \frac{\sigma}{\varepsilon} = \frac{150 \cdot 10^6}{0,002} = 75 GPa \]

b)

\[U = \frac{1}{2} \frac{YA}{\ell_0} (\varepsilon \ell_0)^2 = \frac{1}{2}YA \varepsilon^2 \ell_0 = \frac{1}{2} 75.10^9 \pi (10.10^{-3})^2 \cdot (0,004)^2 \cdot 0,5 = 94,2 J \]

5.

a)

\[\sigma = \frac{F}{A} = \frac{23500}{\pi(5.10^{-3})^2} = 299,36 MPa \Rightarrow \varepsilon = 0,0013 \Rightarrow \]

\[\Delta \ell = \varepsilon \ell_0 = 0,0013 \cdot 75 = 0,0975 mm \]

b)

\[\sigma_e \equiv 530 MPa \quad e\quad \varepsilon_e = 0,002 \Rightarrow \]

\[\mu_k = \frac{1}{2} \sigma_e \varepsilon = \frac{1}{2} 530 \cdot 10^6 \cdot 0,002 = 0,53 MPa \]
$$\Rightarrow Y = 59,65 \text{ GPa}$$
c) \[\Rightarrow \sigma_e \cong 275 \text{ MPa} \]

d) \[\sigma_{\text{máx}} \cong 375 \text{ MPa} \]

e) \[u_R = \frac{1}{2} \times 275 \times 10^6 \times 0.002 = 275 \text{ kPa} \]

f) Tenacidade \cong 55.93 \text{ MPa}

OBS: Encontrado pelo método da soma dos valores correspondentes à aplicação ao longo de toda a tabela da seguinte expressão: \((\sigma_n + \sigma_{n-1})/2 \times (\varepsilon_n - \varepsilon_{n-1}) \)